Convolutional neural networks for the approximation of electrical and thermal conductivities of Cu-CNT composites

0
  • Sundaram, RM, Sekiguchi, A., Sekiya, M., Yamada, T. & Hata, K. Copper/carbon nanotube composites: research trends and perspectives. R. Soc. Open SCI. 5180814 (2018).

    ADS CAS Article Google Scholar

  • Krizhevsky, BA, Sutskever, I. & Hinton, GE ImageNet Classification with Deep Convolutional Neural Networks. Common. MCA 6084–90 (2012).

    Google Scholar article

  • Mikolov, T., Deoras, A., Povey, D., Burget, L. & Černocký, J. Strategies for training large-scale neural network language models. in IEEE 2011 work. Autom. Speech Recognition. Comprehension, ASRU 2011, Proc. 196-201 (2011).

  • Kang, M. & Kwon, B. Deep learning of forced convection heat transfer. J. Heat Transfer 1441–7 (2022).

    Google Scholar article

  • Raissi, M., Yazdani, A. & Karniadakis, GE Hidden Fluid Mechanics: Learning Velocity and Pressure Fields from Flow Visualizations. Science 3671026-1030 (2020).

    ADS MathSciNet CAS Google Scholar Article

  • Edalatifar, M., Tavakoli, MB, Ghalambaz, M. & Setoudeh, F. Using deep learning to learn the physics of conductive heat transfer. J. Therm. Anal. Calorie. 1461435–1452 (2021).

    CAS Google Scholar Article

  • Yang, L., Dai, W., Rao, Y. & Chyu, MK Optimizing Hole Distribution of an Effusively Cooled Surface Facing Nonuniform Incoming Temperature Using Deep Learning Approaches . Int. J. Heat Mass Transf. 145118749 (2019).

    Google Scholar article

  • Kwon, B., Ejaz, F. & Hwang, LK Machine learning for heat transfer correlations. Int. Common. Heat Mass Transf. 116104694 (2020).

    Google Scholar article

  • Wei, H., Zhao, S., Rong, Q. & Bao, H. Prediction of effective thermal conductivities of composite materials and porous media by machine learning methods. Int. J. Heat Mass Transf. 127908–916 (2018).

    Google Scholar article

  • Lee, KW, Son, HS, Cho, KS & Choi, HJ Effect of interfacial bridging atoms on the strength of Al/CNT composites: machine learning-based prediction and experimental validation. J. Mater. Res. Technology. 171770–1776 (2022).

    CAS Google Scholar Article

  • Matos, MAS, Pinho, ST & Tagarielli, VL Application of machine learning to predict the multiaxial strain sensing response of CNT-polymer composites. Carbon NY 146265-275 (2019).

    CAS Google Scholar Article

  • Le, TT Predicting the tensile strength of polymeric carbon nanotube composites using a hands-on machine learning method. J. Compos. Mater. 55787–811 (2021).

    ADS CAS Article Google Scholar

  • Ejaz, F. et al. A two-dimensional finite element model for the Cu-NTC composite: the impact of interface resistances on electrical and thermal transport. Material 24101505 (2022).

    Google Scholar article

  • Khaleghi, E., Torikachvili, M., Meyers, MA & Olevsky, EA Magnetic enhancement of thermal conductivity in copper-carbon nanotube composites produced by electroless plating, lyophilization, and spark plasma sintering. Mater. Lett. 79256-258 (2012).

    CAS Google Scholar Article

  • Choi, ES et al. Improvement of the thermal and electrical properties of polymer composites based on carbon nanotubes by magnetic field treatment. J.Appl. Phys. 946034–6039 (2003).

    ADS CAS Article Google Scholar

  • Dai, J., Wang, Q., Li, W., Wei, Z. & Xu, G. Properties of well-aligned SWNT-modified poly(methyl methacrylate) nanocomposites. Mater. Lett. 6127-29 (2007).

    CAS Google Scholar Article

  • Wang, Q., Dai, J., Li, W., Wei, Z., and Jiang, J. The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Comp. Science. Technology. 681644–1648 (2008).

    CAS Google Scholar Article

  • Zhou, B. et al. Thermal conductivity of aligned NTC/polymer composites by mesoscopic simulation. Comp. Part A Appl. Science. Fab. 90410–416 (2016).

    CAS Google Scholar Article

  • Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Toward real-time object detection with region proposition networks. IEEE Trans. Anal model. Mach. Information. 391137-1149 (2017).

    Google Scholar article

  • Roussakovsky, O. et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Compute. Screw. 115211-252 (2015).

    MathSciNet ArticleGoogle Scholar

  • He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. in proc. IEEE calculation. Soc. Conf. Calculation. Screw. Pattern recognition. 2016december770–778 (2016).

  • LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. proc. IEEE 862278–2323 (1998).

    Google Scholar article

  • Günen, MA Performance comparison of deep learning and machine learning methods in determining wetland water areas using the EuroSAT dataset. About. Science. Pollution. Res. 2921092–21106 (2022).

    Google Scholar article

  • Subramaniam, C. et al. 100-fold increase in current-carrying capacity in a composite of carbon nanotubes and copper. Nat. Common. 41–7 (2013).

    Google Scholar article

  • Akbarpour, MR, Mousa Mirabad, H., Alipour, S. & Kim, HS Improvement of tensile properties and electrical conductivity of processed Cu-CNT nanocomposites via the combination of flake powder metallurgy and torsion methods at high pressure. Mater. Science. Eng. A 773138888 (2020).

    CAS Google Scholar Article

  • Pan, Y. et al. Fabrication, mechanical properties and electrical conductivity of Al2O3 reinforced Cu/NTC composites. J. Compd Alloys. 7821015-1023 (2019).

    CAS Google Scholar Article

  • Daoush, WM, Lim, BK, Mo, CB, Nam, DH & Hong, SH Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by an electroless deposition process. Mater. Science. Eng. A 513–514247–253 (2009).

    Google Scholar article

  • Subramaniam, C. et al. Carbon-copper nanotube exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics. At the nanoscale 62669–2674 (2014).

    ADS CAS Article Google Scholar

  • Chu, K. et al. Thermal properties of carbon nanotube-copper composites for thermal management applications. Nanosc. Res. Lett. 5868–874 (2010).

    ADS CAS Article Google Scholar

  • Kim, K.T. et al. Influence of embedded carbon nanotubes on the thermal properties of copper-matrix nanocomposites processed by mixing at the molecular level. Scr. Mater. 64181-184 (2011).

    CAS Google Scholar Article

  • Nie, JH et al. Fabrication and thermal conductivity of copper matrix composites reinforced with tungsten-coated carbon nanotubes. Int. J. Miner. Metall. Mater. 19446–452 (2012).

    CAS Google Scholar Article

  • Share.

    Comments are closed.